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Supplementary Fig. 1: Histogram of reconstruction residuals. Plotted are the residuals corresponding to the density
matrix reconstruction of the Bell cat state shown in Fig. 2 of the main text. This Histogram shows the distribution of
the 25, 000 residuals from the joint Wigner function which gives a Gaussian distribution (mean value µ = 7.0 × 10−4,
standard deviation σ = 0.015), which agree with our expectation for statistical error σest = 1√

N
≈ 0.015.

Potential qubit decay

Measurement 1

Measurement 2

Supplementary Fig. 2: Measurement trajectories given qubit decoherence. We can model the behaviour of qubit
decoherence in a single measurement trajectory. Qubit decay (which occurs with a probability p) can lead to an improper
initialisation of the second detection and in turn produces an incorrect measurement result. This form of detector
cross-talk can lead to a reduction in visibility and potential systematic offset of the measured qubit-cavity observable:
〈AB〉 → (1− pc) 〈AB〉 − pc 〈B〉 (see section 2).
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Supplementary Fig. 3: Reconstructed Pauli sets. The set of sixteen joint Pauli operators span the two-qubit Hilbert
space of the qubit/encoded-qubit state. Shown is the Pauli set for the entangled target state |ψB〉 derived in two ways.
(Red) is the reconstructed Pauli set using a density matrix reconstruction of the full quantum state with no normalization
constraint, then projecting onto the encoded subspace. (Blue) shows the values discerned from an overlap integral of the
measured joint-Wigner functions (Eq. 8). These measurements agree with each other within statistical errors.
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Supplementary Fig. 4: Informational entropy. The ca-
pacity to store information into a cat state is determined
by the orthoganality of its logical states |β〉 , |−β〉. Shown
is a comparison between the coherent state overlap (dashed
line) and the maximum Von Neumann entropy Eq. 13 (solid
line) for this logical encoding. Notice that entropy rapidly
approaches one bit for β > 1, ensuring that information can
be reliably encoded into the coherent states with manage-
able separations.

0.0 0.5 1.0 1.5 2.0

Coherent state amplitude (β)

0.0

0.1

0.2

0.3

D
is

p
la

ce
m

e
n
t 

(α
)

Supplementary Fig. 5: Optimal displacement for Bell
violation. For performing Bell test #2, the optimal ob-
servables to measure maximum correlations depend on the
size of the Bell-cat state Eq. 32. The dashed black line
shows numerically calculated optimal displacement points
as a function of coherent state amplitude β. Shown in cir-
cles are the experimentally determined optimal displacement
values used to measure a maximum Bell violation. Differ-
ences between chosen and ideal values are a result of the dis-
cretization of our measurement settings. The dashed green
line is the approximate trend |αopt| = | jπ16β | for large cat
states, which diverge at small β.
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Supplementary Fig. 6: Entanglement witnesses with cat states. An entanglement witness and direct fidelity
estimation (DFE) are determined by measuring four qubit-cavity correlations. (a) The entanglement witness W =
II − ZZ − XX + Y Y shows entanglement for all negative values (grey shading). (b) DFE to a target Bell state
F = II + XX − Y Y + ZZ is also shown where entanglement can be confirmed for values above F > 0.5. Notice
that these two witnesses have a much looser bound for entanglement than the CHSH Bell test. Is the standard deviation
due to random error limited by the total number of samples N taken at each displacement (N > 4000).

Supplementary Fig. 7: Observables from each detector
setting. To ensure that a particular detector setting is not
producing systematic errors we have not taken into account.
We report a Bell test for each detector setting used to ob-
serve our maximum violation in test #2. The expectation
value of each observable used in that Bell test is shown for
the four detector settings used. Significant deviations due
to unexpected systematic errors are not observed.
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Supplementary Fig. 8: Bell test for each detector set-
ting. A Bell test is analyzed for each detector setting to
determine the effects of possible systematic errors. Each of
these subtests violate Bell’s inequality by more than three
standard deviations of their statistical error.
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Supplementary Fig. 9: Qubit measurement back-action for an entangled Fock state. (a) A measured Wigner
function of a coherent state |β〉 where β =

√
3 results in a Poissionian photon distribution. Performing a photon-selective

qubit rotation on the mth level where m = 3 results in an entangled state |ψ〉 = Cm |e,m〉+
∑
n 6=m Cn |g, n〉 where Cn is

the coefficient of the nth photon number state Cn = 〈n|β〉. (b) The measured Wigner function of the cavity state after
the qubit has been measured in the −Z state results in a 3-photon Fock state. (c) Instead, when a +Z result is obtained
the measured cavity state Wigner function is a Fock-state subtracted coherent state |ψc〉 = N

∑
n 6=3 Cn |n〉.
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Supplementary Tables

Term Measured
(Prediction)

ωq/2π 5.7651 GHz
ωs/2π 7.2164 GHz
ωr/2π 8.1740 GHz
Kq/2π 240 MHz
Ks/2π 1.5 kHz
Kr/2π (2 kHz)
χqs/2π 1.43 MHz
χqr/2π 1 MHz
χrs/2π (1.7 kHz)

Supplementary Table 1: Hamiltonian parame-
ters

Qubit Storage Readout
T1 10µs - -
T2 10µs - -
τcav - 55µs 30ns

ground state (%) 90% > 98% > 99.8%

Supplementary Table 2: Coherence and thermal properties

Qubit Cavity
Ri M1 Rj M2

1 +Z R
π/2
ŷ +Pα

Rπŷ −Z R
−π/2
ŷ −Pα

R
π/2
ŷ +X

R
−π/2
ŷ −X

R
−π/2
x̂ +Y

R
π/2
x̂ −Y

Supplementary Table 3: Table of measure-
ment operators. As described in Fig. 6 of the
main text, pre-rotations before qubit and cavity
state measurements determine the measured ob-
servable. Shown are the different pre-rotations
used and the corresponding measurement opera-
tor.
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Supplementary Notes

Supplementary Note 1: Gaussian error statistics. We perform single-shot measurements that are discriminated into
binary results and report measured observables taking the mean of N experimental outcomes. All mean values in this
manuscript (including tomography and entanglement witnesses) are reported with N > 4000 measurements and the
highest measurement fidelity for any joint observable is F = (V + 1)/2 = 0.93 such that min[NF , N(1− F)] > 300 � 1.
From this, we can approximate the mean value of all measured observables to follow a gaussian distribution with standard
deviation 1√

N
(Supplementary Fig. 1). In this manuscript, we do not randomly select detector orientations (in order to

close a freedom-of-choice loophole) so in turn the number experiments for each detector orientation is pre-determined and
equal.

Supplementary Note 2: Detector cross-talk. The sequential detection protocol in this experiment uses the same
detector to perform first a qubit measurement followed by a cavity measurement. To minimize unwanted systematic errors
due to detector cross-talk between measurements, we perform each experiment under four detector setting permutations.
Two settings are used for the qubit measurement: a pre-rotation which maps a qubit eigenstate |±〉 to detector values
±Mq

1 and another which maps |±〉 to ∓Mq
1 . Two settings are used for the cavity measurement: a Ramsey experiment

which maps a cavity eigenstate |±〉 to detector values ±M c
2 and another which maps |±〉 to ∓M c

2 (Supplementary Tab. 3).
Each detector setting is performed an equal number of times and results are combined to remove unwanted correlations
between detector readings and measured quantum observables. See Sec. 11 for an analysis on the effects of these detector
settings on a Bell test.

The dominant form of cross-talk for this experiment is due to qubit state decoherence between measurements. To
realize the cavity state measurement, the qubit must be initialized in |g〉, which we perform using active feedback. Qubit
decay can occur during this reset process causing an incorrect initializiation for cavity state detection. We can model
this error by observing the possible trajectories of each measurement outcome (Supplementary Fig. 2). This modifies the
average measurement of the observable AB where A,B are qubit and cavity operators that can be decomposed into qubit
projectors AB = (A+ − A−)B, where A+ + A− = I. Due to qubit decay, the measured value 〈A+B〉 will be modified to
(1 − 2pc)〈A+B〉 where pc is the probability of qubit decay in the time between the first measurement and the feedback
rotation. This relation changes the measurement into:

〈AB〉 →(1− 2pc) 〈A+B〉 − 〈A−B〉 (1)

=(1− pc) 〈A+B −A−B〉 − pc 〈A+B +A−B〉
=(1− pc) 〈AB〉 − pc 〈B〉

For measuring B = Xc, Yc, Zc of the Bell-cat state |ψc〉, we expect 〈B〉 = 0, which gives merely a reduction in the
visibility of the observable 〈AB〉 by a factor(1 − pc) without systematic offsets. We estimate in this experiment that

pc = 1− e−
τwait
T1 ≈ 0.06. With this justification we can predict the additional loss in visibility V mentioned in the previous

section which gives a visibility Vpred = (1 − pc)V = 82%. The experimentally obtained visibility V is 85%; we believe
the discrepency between predicted and measured values is due to an overestimate in the time the qubit is susceptible to
energy decay during measurement.

Supplementary Note 3: Tomography rotation errors. We observe systematic effects attributed to an amplitude error

using theRπŷ operation for pre-rotations used in qubit state tomography. A arbitrary pre-rotationRθ,φ = e
iπθ
2 (σy cosφ+σx sinφ)

transforms a qubit measurement along the Ẑ axis:

Ẑ → cos θẐ + sin θ cosφX̂ + sin θ sinφŶ (2)

If θ 6= 0 or π, a systematic offset can occur. This is observed in Supplementary Fig. 3 where the contrast of 〈ZZc〉
is reduced and a residual offset in 〈ZXc〉 and 〈ZYc〉 respectively are produced. From Eq. 2, we predict the following
relationship:

〈ZZc〉 tan θ =

√
〈ZXc〉2 + 〈ZYc〉2 (3)

From measurements, we can approximate the fractional amplitude rotation error δθ = 4.2%. This under-rotation is due
to a photon-dependence of the calibrated pulse amplitude. Mitigating this error susceptibility is being explored with
composite pulses in future experiments.
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Supplementary Note 4: Calculating observables. We can represent the density matrix in the excitation number basis:

ρ =

1∑
i,j=0

N∑
n,m=0

ρnmij |i〉 〈j| ⊗ |n〉 〈m| (4)

where ρnmij are elements of qubit/cavity density matrix and |i, j〉 is the qubit state in the excitation basis and |n,m〉 is
the cavity state in the excitation (photon number) basis. From a density operator, one can calculate an observable of the
combined system by determining the product of observables from each individual system:

〈AB〉 = Tr [ABρ] (5)

where A, B are operators for the qubit and cavity respectively.
In the joint Wigner function, the qubit basis is the Pauli set σi = {I, σx, σy, σz}. For the cavity mode, we choose the

displaced photon parity operator Pα = DαPD
†
α that corresponds to a single point in the cavity state Wigner function.

For a truncated Hilbert space (in this experiment Nmax = 12 ) and a displacement grid of αmax,min = ±3.4 with step size
∆α = 0.085, this measured Wigner function represents an over-complete set of measurements for the cavity mode. The
joint Wigner function Wi(α) = 2

π 〈σiPα〉 is constructed directly from experimental measurements.
A qubit operator A can be written in the Pauli basis A =

∑
iAiσi where Ai = 1

2Tr[Aσi] and a bounded cavity observable
(see [1] for details) can be represented in continuous-variable basis B = 1

π

∫
B(α)Pαd2α where B(α) = Tr[BPα]. Finally,

the composite qubit-cavity density matrix can be written as:

ρ = π
∑
i

∫
Wi(α)σiPαd2α (6)

Note that for separable states ρ = ρq ⊗ ρc, this relation can be split up into their respective discrete and continuous
components:

ρ =
1

2

∑
i

Tr[ρqσi]σi ⊗ 2π

∫
2

π
Tr[ρcPα]Pαd2α (7)

For any state ρ, we can write the mean value of an observable for the combined system with the following relation:

〈AB〉 = Tr [ABρ]

= 1
2Tr

∑
i,j

∫
AiB(α)Wj(α

′)σiσjPαPα′d
2αd2α′

 (8)

Using the following operator rules Tr[σiσj ] = 2δij and Tr[PαPα′ ] = δ2(α− α′) we can simplify Eq. 8:

〈AB〉 =
∑
i

∫
AiB(α)Wi(α)d2α (9)

The overlap integral used in this calculation is similar to descriptions of the standard Wigner function [1, 2]. Shown in
Supplementary Fig. 3 is a comparison between observables calcuated by Eq. 8 and those determined from a density matrix
reconstruction.

Supplementary Note 5: Detector efficiency. Under experimental conditions, the measured joint Wigner function is
determined with point-by-point measurements of the joint observable 〈σiPα〉. Detector inefficiency results in a reduced
visibility V ∈ [0, 1] and in turn a reduced contrast of the measured joint Wigner functions Wmeas

i (α) = VW ideal
i (α). We

can determine V by tracing over both the qubit and cavity states and comparing this to its ideal value
∫
W ideal
I (α)d2α =

1:

V =

∫
Wmeas
I (α)d2α (10)

where I is the qubit state identity operator. We observe V = 85% and attribute this primarily to readout infidelity and
qubit decay between the sequential measurements (See Sec. 1).

Supplementary Note 6: Density matrix reconstruction. In Fig. 2 of the main text, we show the reconstructed density
matrix of a target Bell-cat state |ψB〉. We perform this reconstruction with a-priori assumptions that the cavity state
is truncated to twelve occupied photon number states Nmax = 12, the resulting noise of each averaged measurement is
gaussian distributed, and the reconstructed density matrix is postive semidefinite with trace equal to one.

Under these constraints, we perform a least squares regression using a Maximum likelihood estimation [3]. To analyze
this regression, we perform residual boostrapping on the reconstructed data set giving bounds on the error statistics of
the inferred state.

7



Supplementary Note 7: Orthogonality of logical states. In the main text, we describe encoded qubit states of the
cavity where logical states |0L〉 , |1L〉 correspond to coherent states |β〉 , |−β〉. This approximation only holds for coherent
states |±β〉 that are quasi-orthoganal |〈−β|β〉|2 � 1. To be more precise, we can calculate the maximum Von-Neumann
entropy of the encoded space to determine its capacity to store infromation:

S = −Tr [ρmax log2 ρmax]

= −
∑
i

ηi log2 ηi (11)

where ρmax = 1
2 (|β〉 〈β|+ |−β〉 〈−β|) is the density matrix for a complete mixture of the logical subspace and η is its set

of eigenvalues. Rewriting ρmax in the even/odd cat state basis:

ρmax = 1
2 (1 + e−2|β|2) |E〉 〈E|+ 1

2 (1− e−2|β|2) |O〉 〈O| (12)

where |E〉 , |O〉 = 1√
2(1±e−2|β|2 )

(|β〉 ± |−β〉). Recall that 〈E|O〉 = 0 for all coherent state amplitudes β. This gives the

following entropy relation:

S = − 1
2 (1+e−2|β|2) log2

(
1
2 (1 + e−2|β|2)

)
(13)

− 1
2 (1− e−2|β|2) log2

(
1
2 (1− e−2|β|2)

)
Shown in Supplementary Fig. 4 is the capacity to store information using this encoding scheme. Entropy varies from zero
bits to a value asymptotically approaching a single bit with increasing coherent state amplitudes β. The orthoganality
betwee logical states |〈β| − β〉|2 is directly related to this information capacity and serves as a proxy for validating the
qubit approximation of the produced cavity state.

Supplementary Note 8: Encoded state observables. The coherent state basis chosen in this report to represent the
encoded qubit has Pauli operators:

Xc = |−β〉 〈β|+ |β〉 〈−β| (14)

Yc = j |−β〉 〈β| − j |β〉 〈−β|
Zc = |β〉 〈β| − |−β〉 〈−β|
Ic = |β〉 〈β|+ |−β〉 〈−β|

Here, we will show that the operators expressed in Eq. 4 of the main text, approximate these encoded Pauli operators.
Assuming 〈β|−β〉 � 1, we have the following photon-number parity P relations:

〈β|P0 |β〉 = 〈β|−β〉 � 1 (15)

〈β|P0 |−β〉 = 〈β|β〉 = 1

〈β|Pα |β〉 = 〈β − α|α− β〉 � 1

〈β|Pα |−β〉 = e2(αβ∗−α∗β) 〈α|−α〉

where Pα = DαPD−α for some displacement amplitude α. Now taking the projector M = |β〉 〈β|+ |−β〉 〈−β|, we derive
the encoded state’s Pauli Operators from the cavity state observables reported in Eq. 4 of the main text:

MP0M
† ≈ |−β〉 〈β|+ |β〉 〈−β| (16)

MPβM
† ≈ |β〉 〈β|

MP−βM
† ≈ |−β〉 〈−β|

MP jπ
8β
M† ≈ j |−β〉 〈β| − j |β〉 〈−β|

Putting these relationships together, as in Eq. 4, builds the encoded state observables {Xc, Yc, Zc, Ic} and reveals that
these observables can be efficiently measured using Wigner tomography. Ic and Zc require a comparison between two
different observables. For true single-shot readout of these logical observable Zc, measuring a single value in the cavity
state Husimi-Q distribution Q(β) = 1

π 〈β|ρ|β〉 can be employed where Zc = 2πQ(β)− 1. This is being explored in future
experiments.
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Supplementary Note 9: Encoded state Pauli set. We can represent the two qubit Bell state shown in Fig. 2 of the
main text as a list of two-qubit correlations. The complete set constitutes the permutation of each of the single qubit
Pauli set {I,X, Y, Z}. We can determine the two-qubit Pauli set from the complete reconstructed qubit-cavity state and
projecting onto the encoded basis of {Ic, Xc, Yc, Zc}. Supplementary Fig. 3 shows the resulting two-qubit Pauli set for the
transmon qubit and an encoded qubit in the cavity mode, a variant of the reduced density matrix representation shown
in Fig. 2 of the main text.

Supplementary Note 10: Encoded state preparation. We can diagnose errors that can occur during state preparation
from the reconstructed Pauli set. The dominant nonideal effects we explore are qubit decay during preparation and
single-qubit rotation error.

During state preparation, the product state |ψ〉 = 1√
2
(|g〉 + |e〉) ⊗ |β〉 is initialized. Under the dispersive interaction,

the system evolves into the entangled state 1√
2
(|g, β〉 + |e,−β〉). To describe the effects of T1 decay, we can look at the

diagonal elements of the reduced density matrix after the entangling evolution of the dispersive interaction:

diag[ρ] = 1
2

{
|g, β〉 〈g, β|+ e−γ |e,−β〉 〈e,−β| (17)

+
∑
k

Ck |g, αk〉 〈g, αk|
}

where αi = βejχtk represents coherent states when a jump occured at time tk and γ = π
χT1

. Projecting onto the logical

basis (here we will aproximate |〈αk|β〉|2 � 1) produces the resulting scaling on the joint Pauli measurements for the ideal
state:

〈IIc〉 ∝ 1
2 (1 + e−γ) 〈ZIc〉 ∝ 1

2 (1− e−γ)

〈ZZc〉 ∝ 1
2 (1 + e−γ) 〈IZc〉 ∝ 1

2 (1− e−γ)
(18)

This gives us an approximate method to predict our ability to prepare a state that is within the logical subspace given
our experimental parameters, 〈IIc〉 = 0.99. Our measured value taking into account detector inefficiencies produces
〈IIc〉 = 0.98.

The preparation of this entangled system is also sensitive to the amplitude of the initial qubit rotation Y/2 = R
π
2

ŷ .
The angle of rotation θ will determine the prepared state as:

|ψ〉 = N{cos θ2 |g, β〉+ sin θ
2 |e,−β〉} (19)

For the states prepared nearly as |ψB〉, θ ≈ π
2 (1 − δθ) and will result in the following modification of the joint Pauli

measurements for an ideal state:
〈ZIc〉 ∝ π

4 δθ

〈IZc〉 ∝ π
4 δθ

(20)

From the measurements in Supplementary Fig. 3, we can determine that the relative error for the rotation angle in our
prepration rotation to be δθ ≈ 2.8%.

Supplementary Note 11: Bell test analysis. The main text reports CHSH Bell tests composed of two qubit observables
A,B and two cavity observables Ac, Bc, correlated such that:

O = 〈AAc〉+ 〈ABc〉 − 〈BAc〉+ 〈BBc〉 (21)

We perform two variants of this test on the state |ψB〉.
Test #1 Model: In the first test we choose qubit cavity observables Zc, Xc and qubit observables Z(θ), X(θ) where:

Z(θ) = Z cos θ2 −X sin θ
2 X(θ) = X cos θ2 + Z sin θ

2 (22)

This angle θ corresponds to a rotation of the qubit state before detection. In Fig. 4a of the main text, we plot O for
each of the four permutations of the joint observables and find a maximum Bell violation for an angle θ = −π4 giving
observables:

A = X+Z√
2

; B = X−Z√
2

Ac = Zc; Bc = Xc
(23)

As shown in Fig. 4c of the main text, we can model the effects of photon loss and measurement inefficiency on the maximum
violation. For the ideal case, an overlap of the coherent state superposition reduces contrast in 〈AZc〉 and 〈BZc〉 and will
limit the maximum Bell signal:

Oideal =
√

2(2− e−8|β|2) (24)
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Measurement inefficiency will reduce the contrast of this maximum Bell signal which we expect to go as the visibility V:

Ovis =
√

2V(2− e−8|β|2) (25)

Photon loss will also have an effect on the maximum Bell signal by reducing the measured contrast of all correlations for
〈AXc〉 and 〈BXc〉. This produces the an amplitude dependent maximum Bell Signal:

Oloss =
√

2(1− e−8|β|2 − e−2|β|2γ) (26)

where γ = teff
τs

such that τs is the photon decay time constant and teff is the effective time to create and measure the
Bell-cat state. Finally taking into account both visibility and photon loss produces the expected maximum Bell signal:

Opred =
√

2V(1− e−8|β|2 − e−2γ|β|2) (27)

This predicted Bell signal is shown in Fig. 4 of the main text using the measured joint-Wigner contrast V = 0.85 and time
between cavity state creation and detection teff = 1.24 µs.

Test #2 Model: In the second test, we choose qubit observables X,Y and cavity observables Xc(α), Yc(α) where:

Xc(α) = DjαP0D
†
jα ≈ Xc cos α

4β + Yc sin α
4β (28)

Yc(α) = DjαP jπ
8β
D†jα ≈ Yc cos α

4β −Xc sin α
4β

Where the displacement amplitude α corresponds to an approximate rotation of the encoded cavity state before detection.
In Fig. 4b, we plot O for each of the four permutations of the joint observables and find a maximum Bell violation for a
displacement α = 0.15 for β = 1 which produces the approximate observables:

A = X; B = Y
Ac = Xc+Yc√

2
Bc = Xc−Yc√

2

(29)

Shown in Fig. 4c of the main text, we can also model the effects of photon loss and measurement inefficiency for the second
test. The ideal case is the result of four summed joint Wigner values represented as:

Oideal = 2(cos 4α0β + sin 4α0β)e−2|α0|2 (30)

where α0 is an optimal displacement for maximum violation which can be calculated from Eq. 32 and in detail in Ref. [4].
Taking into account photon loss and measurement inefficiency produces the following relationship:

Opred = 2Ve−2γ|β|2(cos 4α0β + sin 4α0β)e−2|α0|2 (31)

This predicted Bell signal is shown in Fig. 4b of the main text using the measured joint-Wigner contrast V = 0.85 and an
effective time teff = 1.24 µs.

Supplementary Note 12: Optimal measurements for encoded observables. Eq. 3 of the main text describes the
ideal observables to efficiently determine an encoded qubit state observable using a superposition state with |β| � 1. In
fact, the optimal measurement for particular observables will be further modified for smaller coherent displacements.

For the second CHSH experiment, the optimal observable P±jα0
∼ 1√

2
(X̂c ± Ŷc) follows the relation:

β − α0

β + α0
= tan 4α0β (32)

where α0 is the amplitude for a coherent displacement Djα0
to perform the measurement Pjα0

given β. Further details are

discussed in Ref. [4]. In the large β limit, the observable corresponds to the encoded qubit state observable 1√
2
(X̂c + Ŷc)

and follows the relationship Pα= jπ
16β

as related in Eq. 4 of the main text. Shown in Supplementary Fig. 5 is the predicted

and chosen optimal values for a maximum CHSH Bell signal.

Supplementary Note 13: Two-qubit entanglement witnesses. Two qubit entanglement can also be quantified by an

entanglement witness W = IIc − XXc + Y Yc − ZZc [5] for a Bell state |ψ〉 = 1√
2
(|gg〉 + |ee〉). The witness ‘confirms’

entanglement for all observations of 〈W〉 < 0. Shown in Supplementary Fig. 6, we report W (as well as its corresponding
direct fidelity estimation F) as a function of coherent state amplitude β using the optimal displacements described in
Supplementary Fig. 5. As expected, entanglement is not detected for a β = 0 coherent state (a product state 1√

2
(|g〉 +

|e〉)⊗ |0〉).
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Supplementary Note 14: Bell test for each detector setting. We analyze the systematic errors that can occur from
a particular detector setting. Shown in Supplementary Fig. 7 are the observables used to calculated a Bell violation using
test #2 for each of the four detector settings Sec. 1. Systematic errors are shown to be within statistical bounds of the
experiment and each detector setting violates Bell’s inequality by at least three standard deviations; see Supplementary
Figs. 7 and 8. In the main text, we report measurements from the combined data set resulting in smaller statistical error
and a stronger violation of Bell’s inequality.

Supplementary Note 15: Sequential detection with Fock states. The sequential measurement protocol allows us
to observe quantum measurement back-action of the qubit on the cavity state. This is not restricted to coherent state
superpositions as shown in the main text. For example, we can prepare the system in a state such that the qubit state |e〉
is correlated with the mth photon Fock state |m〉 of a coherent state |β〉 (in this example m = 3 photons and β =

√
3).

This can be written as:

|ψ〉 = Cm |e,m〉+
∑
n 6=m

Cn |g, n〉 (33)

where Cm = 〈m|β〉. Shown in Supplementary Fig. 9, when the qubit is measured along the Ẑ axis we observe a change
in photon statistics such that a +1 event projects the cavity onto the state |ψcav〉 = N (|β〉 − Cm |m〉) and a −1 event
projects onto the Fock state |ψcav〉 = |m〉.
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